Science News: Research stimulate areas vital to consciousness in monkey's brains--and it wakes them up
Science Daily:
Date:
February 12, 2020
Source: Cell Press
One of the central questions in neuroscience is clarifying where in the brain consciousness, which is the ability to experience internal and external sensations, arises. Researchers report that a specific area in the brain, the central lateral thalamus, appears to play a key role. In monkeys under anesthesia, stimulating this area was enough to wake the animals and elicit normal waking behaviors.
Share:
FULL STORY
One of the central questions in neuroscience is clarifying where in the brain consciousness, which is the ability to experience internal and external sensations, arises. On February 12 in the journal Neuron, researchers report that a specific area in the brain, the central lateral thalamus, appears to play a key role. In monkeys under anesthesia, stimulating this area was enough to wake the animals and elicit normal waking behaviors.
Previous studies, including EEG and fMRI studies in humans, had suggested that certain areas of the brain, including the parietal cortex and the thalamus, appear to be involved in consciousness. "We decided to go beyond the classical approach of recording from one area at a time," says senior author Yuri Saalmann, an assistant professor at the University of Wisconsin, Madison. "We recorded from multiple areas at the same time to see how the entire network behaves."
The investigators used macaques as their animal model. By studying awake, sleeping, and anesthetized animals, they were able to narrow down the region of the brain involved in consciousness to a much more specific area than other studies have done. They were also able to rule out some areas that had been proposed in previous neurocorrelative studies of consciousness. They ultimately focused on the central lateral thalamus, which is found deep in the forebrain.
Once the researchers pinpointed this area, they tested what happened when the central lateral thalamus was activated while the animals were under anesthesia, stimulating the region with a frequency of 50 Hz. "We found that when we stimulated this tiny little brain area, we could wake the animals up and reinstate all the neural activity that you'd normally see in the cortex during wakefulness," Saalmann says. "They acted just as they would if they were awake. When we switched off the stimulation, the animals went straight back to being unconscious."
One test of wakefulness was their neural responses to oddball auditory stimulation -- a series of beeps interspersed with other random sounds. The animals responded in the same way that awake animals would respond.
"Our electrodes have a very different design," Saalmann says. "They are much more tailored to the shape of the structure in the brain we want to stimulate. They also more closely mimic the electrical activity that's seen in a healthy, normal system."
"The overriding motivation of this research is to help people with disorders of consciousness to live better lives," says first author Michelle Redinbaugh, a graduate student in the Department of Psychology at the University of Wisconsin, Madison. "We have to start by understanding the minimum mechanism that is necessary or sufficient for consciousness, so that the correct part of the brain can be targeted clinically."
"There are many exciting implications for this work," she says. "It's possible we may be able to use these kinds of deep-brain stimulating electrodes to bring people out of comas. Our findings may also be useful for developing new ways to monitor patients under clinical aneshesia, to make sure they are safely unconscious."
This study was funded by the National Institutes of Health, a United States-Israel Binational Science Foundation, and a Wisconsin National Primate Research Center pilot grant.
Story Source: Materials provided by Cell Press. Note: Content may be edited for style and length.
Journal Reference: Michelle J. Redinbaugh, Jessica M. Phillips, Niranjan A. Kambi, Sounak Mohanta, Samantha Andryk, Gaven L. Dooley, Mohsen Afrasiabi, Aeyal Raz, Yuri B. Saalmann. Thalamus Modulates Consciousness via Layer-Specific Control of Cortex. Neuron, 2020; DOI: 10.1016/j.neuron.2020.01.005
Cite This Page: MLA
APA
Chicago
Cell Press. "Researchers stimulate areas vital to consciousness in monkeys' brains -- and it wakes them up." ScienceDaily. ScienceDaily, 12 February 2020. <www.sciencedaily.com/releases/2020/02/200212111440.htm>.
When you subscribe to the blog, we will send you an e-mail when there are new updates on the site so you wouldn't miss them.
On September 11, 2001, the world watched in shock as one of the most tragic events in modern history unfolded. In a matter of hours, the skyline of New York City was forever changed, and with it, the ...
Have you ever wondered how a high-sugar diet, which spells trouble for humans, could be the key to survival for another species? Bats, the nocturnal creatures that often capture our imagination with t...
Every year on August 26th, dog lovers across the country come together to celebrate National Dog Day—a day dedicated to recognizing the joy and companionship that dogs bring into our lives. Whether yo...
A recent study has revealed that the estimated death toll of birds due to building collisions significantly underrepresents the true scale of the problem. NC Lights Out September 6 - October 6, ...
When the air turns crisp and the mountains of Western North Carolina burst into a kaleidoscope of autumn colors, there's no better place to be than right here, surrounded by nature's finest display. W...